Copied to
clipboard

G = C23.13D20order 320 = 26·5

6th non-split extension by C23 of D20 acting via D20/C10=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.13D20, C22⋊C87D5, C406C49C2, C405C45C2, (C2×C8).110D10, C207D4.8C2, (C2×C20).242D4, (C2×C4).120D20, D205C411C2, C10.10(C4○D8), (C22×C4).87D10, (C22×C10).57D4, C20.284(C4○D4), C2.15(C8⋊D10), C10.12(C8⋊C22), (C2×C40).121C22, (C2×C20).747C23, (C2×D20).14C22, C22.110(C2×D20), C51(C23.19D4), C4⋊Dic5.14C22, C4.108(D42D5), C2.12(D407C2), C23.21D101C2, (C22×C20).98C22, C10.19(C22.D4), C2.15(C22.D20), (C5×C22⋊C8)⋊9C2, (C2×C10).130(C2×D4), (C2×C4).692(C22×D5), SmallGroup(320,364)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C23.13D20
C1C5C10C20C2×C20C2×D20C207D4 — C23.13D20
C5C10C2×C20 — C23.13D20
C1C22C22×C4C22⋊C8

Generators and relations for C23.13D20
 G = < a,b,c,d,e | a2=b2=c2=1, d20=c, e2=cb=bc, ab=ba, eae-1=ac=ca, dad-1=abc, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd19 >

Subgroups: 494 in 106 conjugacy classes, 39 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C22⋊C8, D4⋊C4, C4.Q8, C2.D8, C42⋊C2, C4⋊D4, C40, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C23.19D4, C4×Dic5, C4⋊Dic5, D10⋊C4, C23.D5, C2×C40, C2×D20, C2×C5⋊D4, C22×C20, C406C4, C405C4, D205C4, C5×C22⋊C8, C23.21D10, C207D4, C23.13D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C22.D4, C4○D8, C8⋊C22, D20, C22×D5, C23.19D4, C2×D20, D42D5, C22.D20, D407C2, C8⋊D10, C23.13D20

Smallest permutation representation of C23.13D20
On 160 points
Generators in S160
(1 107)(2 126)(3 109)(4 128)(5 111)(6 130)(7 113)(8 132)(9 115)(10 134)(11 117)(12 136)(13 119)(14 138)(15 81)(16 140)(17 83)(18 142)(19 85)(20 144)(21 87)(22 146)(23 89)(24 148)(25 91)(26 150)(27 93)(28 152)(29 95)(30 154)(31 97)(32 156)(33 99)(34 158)(35 101)(36 160)(37 103)(38 122)(39 105)(40 124)(41 92)(42 151)(43 94)(44 153)(45 96)(46 155)(47 98)(48 157)(49 100)(50 159)(51 102)(52 121)(53 104)(54 123)(55 106)(56 125)(57 108)(58 127)(59 110)(60 129)(61 112)(62 131)(63 114)(64 133)(65 116)(66 135)(67 118)(68 137)(69 120)(70 139)(71 82)(72 141)(73 84)(74 143)(75 86)(76 145)(77 88)(78 147)(79 90)(80 149)
(1 76)(2 77)(3 78)(4 79)(5 80)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 57)(23 58)(24 59)(25 60)(26 61)(27 62)(28 63)(29 64)(30 65)(31 66)(32 67)(33 68)(34 69)(35 70)(36 71)(37 72)(38 73)(39 74)(40 75)(81 159)(82 160)(83 121)(84 122)(85 123)(86 124)(87 125)(88 126)(89 127)(90 128)(91 129)(92 130)(93 131)(94 132)(95 133)(96 134)(97 135)(98 136)(99 137)(100 138)(101 139)(102 140)(103 141)(104 142)(105 143)(106 144)(107 145)(108 146)(109 147)(110 148)(111 149)(112 150)(113 151)(114 152)(115 153)(116 154)(117 155)(118 156)(119 157)(120 158)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 55 56 40)(2 39 57 54)(3 53 58 38)(4 37 59 52)(5 51 60 36)(6 35 61 50)(7 49 62 34)(8 33 63 48)(9 47 64 32)(10 31 65 46)(11 45 66 30)(12 29 67 44)(13 43 68 28)(14 27 69 42)(15 41 70 26)(16 25 71 80)(17 79 72 24)(18 23 73 78)(19 77 74 22)(20 21 75 76)(81 112 139 130)(82 129 140 111)(83 110 141 128)(84 127 142 109)(85 108 143 126)(86 125 144 107)(87 106 145 124)(88 123 146 105)(89 104 147 122)(90 121 148 103)(91 102 149 160)(92 159 150 101)(93 100 151 158)(94 157 152 99)(95 98 153 156)(96 155 154 97)(113 120 131 138)(114 137 132 119)(115 118 133 136)(116 135 134 117)

G:=sub<Sym(160)| (1,107)(2,126)(3,109)(4,128)(5,111)(6,130)(7,113)(8,132)(9,115)(10,134)(11,117)(12,136)(13,119)(14,138)(15,81)(16,140)(17,83)(18,142)(19,85)(20,144)(21,87)(22,146)(23,89)(24,148)(25,91)(26,150)(27,93)(28,152)(29,95)(30,154)(31,97)(32,156)(33,99)(34,158)(35,101)(36,160)(37,103)(38,122)(39,105)(40,124)(41,92)(42,151)(43,94)(44,153)(45,96)(46,155)(47,98)(48,157)(49,100)(50,159)(51,102)(52,121)(53,104)(54,123)(55,106)(56,125)(57,108)(58,127)(59,110)(60,129)(61,112)(62,131)(63,114)(64,133)(65,116)(66,135)(67,118)(68,137)(69,120)(70,139)(71,82)(72,141)(73,84)(74,143)(75,86)(76,145)(77,88)(78,147)(79,90)(80,149), (1,76)(2,77)(3,78)(4,79)(5,80)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(81,159)(82,160)(83,121)(84,122)(85,123)(86,124)(87,125)(88,126)(89,127)(90,128)(91,129)(92,130)(93,131)(94,132)(95,133)(96,134)(97,135)(98,136)(99,137)(100,138)(101,139)(102,140)(103,141)(104,142)(105,143)(106,144)(107,145)(108,146)(109,147)(110,148)(111,149)(112,150)(113,151)(114,152)(115,153)(116,154)(117,155)(118,156)(119,157)(120,158), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,55,56,40)(2,39,57,54)(3,53,58,38)(4,37,59,52)(5,51,60,36)(6,35,61,50)(7,49,62,34)(8,33,63,48)(9,47,64,32)(10,31,65,46)(11,45,66,30)(12,29,67,44)(13,43,68,28)(14,27,69,42)(15,41,70,26)(16,25,71,80)(17,79,72,24)(18,23,73,78)(19,77,74,22)(20,21,75,76)(81,112,139,130)(82,129,140,111)(83,110,141,128)(84,127,142,109)(85,108,143,126)(86,125,144,107)(87,106,145,124)(88,123,146,105)(89,104,147,122)(90,121,148,103)(91,102,149,160)(92,159,150,101)(93,100,151,158)(94,157,152,99)(95,98,153,156)(96,155,154,97)(113,120,131,138)(114,137,132,119)(115,118,133,136)(116,135,134,117)>;

G:=Group( (1,107)(2,126)(3,109)(4,128)(5,111)(6,130)(7,113)(8,132)(9,115)(10,134)(11,117)(12,136)(13,119)(14,138)(15,81)(16,140)(17,83)(18,142)(19,85)(20,144)(21,87)(22,146)(23,89)(24,148)(25,91)(26,150)(27,93)(28,152)(29,95)(30,154)(31,97)(32,156)(33,99)(34,158)(35,101)(36,160)(37,103)(38,122)(39,105)(40,124)(41,92)(42,151)(43,94)(44,153)(45,96)(46,155)(47,98)(48,157)(49,100)(50,159)(51,102)(52,121)(53,104)(54,123)(55,106)(56,125)(57,108)(58,127)(59,110)(60,129)(61,112)(62,131)(63,114)(64,133)(65,116)(66,135)(67,118)(68,137)(69,120)(70,139)(71,82)(72,141)(73,84)(74,143)(75,86)(76,145)(77,88)(78,147)(79,90)(80,149), (1,76)(2,77)(3,78)(4,79)(5,80)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(81,159)(82,160)(83,121)(84,122)(85,123)(86,124)(87,125)(88,126)(89,127)(90,128)(91,129)(92,130)(93,131)(94,132)(95,133)(96,134)(97,135)(98,136)(99,137)(100,138)(101,139)(102,140)(103,141)(104,142)(105,143)(106,144)(107,145)(108,146)(109,147)(110,148)(111,149)(112,150)(113,151)(114,152)(115,153)(116,154)(117,155)(118,156)(119,157)(120,158), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,55,56,40)(2,39,57,54)(3,53,58,38)(4,37,59,52)(5,51,60,36)(6,35,61,50)(7,49,62,34)(8,33,63,48)(9,47,64,32)(10,31,65,46)(11,45,66,30)(12,29,67,44)(13,43,68,28)(14,27,69,42)(15,41,70,26)(16,25,71,80)(17,79,72,24)(18,23,73,78)(19,77,74,22)(20,21,75,76)(81,112,139,130)(82,129,140,111)(83,110,141,128)(84,127,142,109)(85,108,143,126)(86,125,144,107)(87,106,145,124)(88,123,146,105)(89,104,147,122)(90,121,148,103)(91,102,149,160)(92,159,150,101)(93,100,151,158)(94,157,152,99)(95,98,153,156)(96,155,154,97)(113,120,131,138)(114,137,132,119)(115,118,133,136)(116,135,134,117) );

G=PermutationGroup([[(1,107),(2,126),(3,109),(4,128),(5,111),(6,130),(7,113),(8,132),(9,115),(10,134),(11,117),(12,136),(13,119),(14,138),(15,81),(16,140),(17,83),(18,142),(19,85),(20,144),(21,87),(22,146),(23,89),(24,148),(25,91),(26,150),(27,93),(28,152),(29,95),(30,154),(31,97),(32,156),(33,99),(34,158),(35,101),(36,160),(37,103),(38,122),(39,105),(40,124),(41,92),(42,151),(43,94),(44,153),(45,96),(46,155),(47,98),(48,157),(49,100),(50,159),(51,102),(52,121),(53,104),(54,123),(55,106),(56,125),(57,108),(58,127),(59,110),(60,129),(61,112),(62,131),(63,114),(64,133),(65,116),(66,135),(67,118),(68,137),(69,120),(70,139),(71,82),(72,141),(73,84),(74,143),(75,86),(76,145),(77,88),(78,147),(79,90),(80,149)], [(1,76),(2,77),(3,78),(4,79),(5,80),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,57),(23,58),(24,59),(25,60),(26,61),(27,62),(28,63),(29,64),(30,65),(31,66),(32,67),(33,68),(34,69),(35,70),(36,71),(37,72),(38,73),(39,74),(40,75),(81,159),(82,160),(83,121),(84,122),(85,123),(86,124),(87,125),(88,126),(89,127),(90,128),(91,129),(92,130),(93,131),(94,132),(95,133),(96,134),(97,135),(98,136),(99,137),(100,138),(101,139),(102,140),(103,141),(104,142),(105,143),(106,144),(107,145),(108,146),(109,147),(110,148),(111,149),(112,150),(113,151),(114,152),(115,153),(116,154),(117,155),(118,156),(119,157),(120,158)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,55,56,40),(2,39,57,54),(3,53,58,38),(4,37,59,52),(5,51,60,36),(6,35,61,50),(7,49,62,34),(8,33,63,48),(9,47,64,32),(10,31,65,46),(11,45,66,30),(12,29,67,44),(13,43,68,28),(14,27,69,42),(15,41,70,26),(16,25,71,80),(17,79,72,24),(18,23,73,78),(19,77,74,22),(20,21,75,76),(81,112,139,130),(82,129,140,111),(83,110,141,128),(84,127,142,109),(85,108,143,126),(86,125,144,107),(87,106,145,124),(88,123,146,105),(89,104,147,122),(90,121,148,103),(91,102,149,160),(92,159,150,101),(93,100,151,158),(94,157,152,99),(95,98,153,156),(96,155,154,97),(113,120,131,138),(114,137,132,119),(115,118,133,136),(116,135,134,117)]])

59 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222244444444455888810···101010101020···202020202040···40
size1111440222220202020402244442···244442···244444···4

59 irreducible representations

dim11111112222222222444
type+++++++++++++++-+
imageC1C2C2C2C2C2C2D4D4D5C4○D4D10D10C4○D8D20D20D407C2C8⋊C22D42D5C8⋊D10
kernelC23.13D20C406C4C405C4D205C4C5×C22⋊C8C23.21D10C207D4C2×C20C22×C10C22⋊C8C20C2×C8C22×C4C10C2×C4C23C2C10C4C2
# reps111211111244244416144

Matrix representation of C23.13D20 in GL4(𝔽41) generated by

17700
352400
001631
00525
,
40000
04000
00400
00040
,
40000
04000
0010
0001
,
202700
12600
003233
0009
,
382300
5300
00320
00032
G:=sub<GL(4,GF(41))| [17,35,0,0,7,24,0,0,0,0,16,5,0,0,31,25],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[20,12,0,0,27,6,0,0,0,0,32,0,0,0,33,9],[38,5,0,0,23,3,0,0,0,0,32,0,0,0,0,32] >;

C23.13D20 in GAP, Magma, Sage, TeX

C_2^3._{13}D_{20}
% in TeX

G:=Group("C2^3.13D20");
// GroupNames label

G:=SmallGroup(320,364);
// by ID

G=gap.SmallGroup(320,364);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,254,555,142,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^20=c,e^2=c*b=b*c,a*b=b*a,e*a*e^-1=a*c=c*a,d*a*d^-1=a*b*c,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^19>;
// generators/relations

׿
×
𝔽